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Cavitation and the state of stress in a flowing
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The problem of the inception of cavitation is formulated in terms of a comparison of
the breaking strength or cavitation threshold at each point in a liquid sample with the
principal stresses there. A criterion of maximum tension is proposed which unifies the
theory of cavitation, the theory of maximum tensile strength of liquid filaments and
the theory of fracture of amorphous solids. Liquids at atmospheric pressure which
cannot withstand tension will cavitate when and where tensile stresses due to motion
exceed one atmosphere. A cavity will open in the direction of the maximum tensile
stress which is 45◦ from the plane of shearing in pure shear of a Newtonian fluid.
Experiments which support these ideas are discussed and some new experiments are
proposed.

1. Introduction
In previous papers (Joseph 1995; Joseph, Huang & Candler 1996) I drew attention

to the fact that the pressure in a flowing incompressible liquid is not a fundamental
dynamic variable; at each point in the liquid the state of stress is determined by three
principal stresses. In Newtonian fluids the pressure is the negative of the mean of these
stresses (1.6); in non-Newtonian fluids the pressure is an unknown field variable whose
relation to the principal stresses depends on the choice of a constitutive equation.

We may generally express the stress T by a constitutive equation of the form

T = −p1 + τττ[u] (1.1)

where the part τττ of T which is characterized by a constitutive equation can be
regarded as functional of the velocity u. For incompressible liquids, the conservation
of mass is expressed by

∇ · u = 0 (1.2)

and the conservation of momentum by

ρ

[
∂u

∂τ
+ u · ∇u

]
= −∇p+ ∇ · τττ[u]. (1.3)

Equations (1.2) and (1.3) are four equations for three components of velocity and the
pressure p is an additional unknown which we need to close the system.

For Newtonian liquids

τττ[u] = 2ηD[u], (1.4)
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where D[u], the rate of strain, is the symmetric part of the gradient of velocity, η is
the viscosity, and

TraceD[u] = ∇ · u = 0. (1.5)

As a consequence of (1.5),

p = − 1
3

TraceT . (1.6)

More generally, Trace τττ 6= 0 and

p = − 1
3

trace (T − τττ) (1.7)

depends on the constitutive equation, the choice of the functional relating τττ to u.
Though it is true that a liquid at rest, in which all the stresses are all equal to −p,

can make sense of (1.6), a moving liquid cannot average the principal stresses as is
required by (1.6), and (1.7) is even more a consequence of how we choose to define τττ
than a fundamental quantity which can be felt at a point by the liquid.

2. Cavitation index
The idea is that the state of stress at each point of a moving liquid is determined

by the three principal stresses

T11 > T33 > T22 (2.1)

and not by the pressure given by (1.7). Criteria for the inception of cavitation in
liquids are here framed in terms of the principal stresses (2.1) rather than the pressure
(1.7) used traditionally. Most of the traditional studies are framed in terms of a
cavitation index. The utility of a cavitation index based on pressure is not evident. In
one formulation, the index is given by

k =
p̃− pc
1
2
ρU2

, (2.2)

where p̃ is the static pressure in the main stream, U is the bulk velocity of the fluid
and p̃ and U are measured at the instant that cavitation commences.

Milne-Thompson (1960, chapter XII) considers the vapour cavity behind a moving
cylinder and he forms an index which he attributes to Prandtl

k =
p̃− pc
1
2
ρU2

=
V 2 −U2

U2
, (2.3)

where p̃ is the pressure at ∞, pc is the pressure in the cavity and V is the fluid speed
on the cavity wall. By Bernoulli’s theorem

p̃+ 1
2
ρU2 = pc + 1

2
ρV 2. (2.4)

This index shows that a cavity will form on the top of the cylinder where the flow is
fastest.

Some limitations of the cavitation index are widely appreciated by the cavitation
community. The important discovery (Arakeri & Acosta 1973) has been that, even
though viscous stresses are thought to have a negligible effect in cavitating water
flows, viscosity has a major impact on flow structure, like separation points, which
have an impact on the pressure distribution as a consequence of which cavitation is
also affected. Franc & Michel (1985) found that in the flow of water over circular
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and elliptic cylinders cavities do not detach from the body at the minimum pressure
point, but behind a laminar separation. They noted a direct link between separation
of the laminar boundary layer and the initial signs of cavitation both of which are
located in the recirculation zone downstream of the detachment.

Other limitations of the cavitation index, like cavitation induced by high flow-
induced tensile stresses, have not been considered by the cavitation community. Such
stresses, though typically small in water, could reach sensible values in more viscous
liquids, and even in special flows of water. High tensile stresses on water threads
stripped of a drop by high-speed air may also cause cavitation (Joseph, Huang
& Candler 1996). The possibility of flow-induced tensile stresses due to stretching
motions at a point of separation in cavitating flows at the inlet of holes in atomizers
ought to be considered.

3. Principal stresses and cavitation
The state of stress rather than its average value is fundamental for all the motions

of an incompressible fluid. Here, however, we focus on the inception of cavitation and
not on the shape and motion of an open cavity. Even though criteria for cavitation
ought to be based on the principal stresses and not the pressure, it is useful to
introduce a pressure as the mean normal stress as in a Newtonian liquid and to define
it that way for non-Newtonian liquids. If we write

T = −π1 + S = −p1 + τττ, (3.1)

where p is given by (1.7) and S is the stress deviator,

π = − 1
3

Trace T , Trace S = S11 + S22 + S33 = 0. (3.2)

Since S11 > S33 > S22 we have

S11 > 0 and S22 < 0, (3.3)

where

S11 − S22 > 0 (3.4)

is largest in the coordinate system in which T is diagonal.
Consider now the opening of a small cavity. It is hard to imagine very large

differences in the pressure of the vapour in the cavity so that the cavity should open
in the direction where the tension is greatest. The idea that vapour cavities open
through tension is endemic in the cavitation community, but is seems not to have
been noticed before that this idea requires one to consider the state of stress at a point
and, at the very least, to determine the special principal axes coordinates in which
the tension is maximum. To remind us of this important point we shall call ζ(θ) the
special coordinate system in which the orthogonal transformation Q diagonalizes T
(and S):

QTTQ = diag(T11, T22, T33). (3.5)

Here θ in ζ(θ) stands for the direction cosines in the diagonalizing transformation,
and θ is the diagonalizing angle for the two-dimensional rotation. The rotation of T
is an important part of the theory of cavitation which has not been considered before.

In two dimensions the components of the stress deviator in ζ(0) are given by

[S] =

[
S11 S12

S12 −S11

]
. (3.6)
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The angle θ that diagonalizes S is given by

sin 2θ = S12/(S
2
12 + S2

11)
1/2, cos 2θ = S11/(S

2
12 + S2

11)
1/2 (3.7)

and

[S] = (S2
12 + S2

11)
1/2

[
1 0
0 −1

]
. (3.8)

The largest stress component in the principal value coordinate system is

T11 + 1
2
(T11 + T22) = S11; (3.9)

the smallest component is

T22 + 1
2
(T11 + T22) = −S11 (3.10)

and

T11 − T22 = 2S11. (3.11)

We call T11 the maximum tension and T22 is the minimum tension. If the maximum
tension is negative, it is compressive; the minimum tension is even more compressive.

If the cavitation (outgassing) threshold pc is above π−S11 but below π the cavity will
appear when and where the tension due to motion is large enough; if this threshold
is greater than π − S22(S22 < 0) then the cavity will open only at those points where
no component of the total stress is larger than the cavitation threshold; this is the
minimum tension criterion and in neither case is the criterion framed in terms of the
pressure π alone.

If a cavitation bubble opens up, it will open in the direction of maximum tension. Since
this tension is found in the particular coordinate system in which the stress is diagonal,
the opening direction is in the direction of maximum extension, even if the motion is
a pure shear. It may open initially as an ellipsoid before flow vorticity rotates the
major axis of ellipsoid away from the principal tension axis of stress, or it may open
abruptly into a ‘slit’ vacuum cavity perpendicular to the tension axis before vapour
fills the cavity as in the experiments of Kuhl et al. (1994) (see figures 2 and 3).

These features in the two-dimensional problem have an immediate and obvious
extension to three dimensions.

4. Cavitation criteria
In what follows I am going to assume that the breaking stress is a given parameter

which can be defined at each point in a liquid; we then compare the state of stress in
a moving liquid at the point with pc to form a cavitation criterion.

The cavitation threshold used in the literature is framed in terms of a mean stress

π = − 1
3
(T11 + T22 + T33). (4.1)

Cavitation will occur when π − pc < 0 and not when π − pc > 0. The mean stress
may be a good estimate for breaking thresholds, but it has no physical meaning in a
moving fluid since the fluid cannot average its stresses.

Two cavitation thresholds based on the maximum tension T11 and minimum tension
T22 in three dimensions can be considered; recall that the deviatoric stresses are such
that

S11 > 0, S22 < 0 (4.2)

so that T22 = S22 − π is the minimum tension.
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The maximum tension criterion is given by

B11
def
= T11 + pc = S11 − π + pc > 0. (4.3)

In this case

π − pc < S11 (4.4)

and since the tension S11 > 0, π − pc could be larger than zero and the liquid would
still cavitate. If (4.3) holds and

B22
def
= T22 + pc < 0 (4.5)

then relative to the threshold pc, the stress B11 is in ‘tension’ and B22 < 0 is a
‘compression’.

If (4.3) holds and

B22 > 0 (4.6)

then all three of the relative principal stresses B11, B22, B33 are positive and a cavity
will open. This is the minimum tension criterion. This criterion for cavitation is more
severe than the classical one which requires that the average value of these relative
stresses be positive.

The archival literature on cavitation allows only for breaking in tension, though
the state of stress at a point which ought to be considered, has not been considered.
Typically the discussion of cavitation is framed in the context of the breaking strength
of liquids; the main conclusion is that liquids may withstand very large tensions if
impurities and nucleation sites are suppressed. There is a vast literature on the tensile
strength of liquids some of which may be found in the book by Knapp, Daily &
Hammitt (1970) who say that ‘. . . Measurements have been made by several different
methods and are too numerous to report completely’, and in other books on cavitation.

Knapp et al. (1970) have considered whether the cavitation threshold ought to be
framed in terms of the vapour pressure or the tensile strength of liquids, concluding
for the latter. They say that

. . . the elementary concept of inception is the formation of cavities at the instant
the local pressure drops to the vapor pressure of the liquid. However, the problem is
not so simple. Although experiments show inception to occur near the vapor pressure,
there are deviations of various degrees with both water and other liquids that are
not reconcilable with the vapor-pressure concept. We define the vapor pressure as
the equilibrium pressure, at a specified temperature, of the liquid’s vapor which is in
contact with an existing free surface. If a cavity is to be created in a homogeneous
liquid, the liquid must be ruptured, and the stress required to do this is not measured
by the vapor pressure but is the tensile strength of the liquid at that temperature. The
question naturally arises then as to the magnitudes of tensile strengths and the relation
these have to experimental findings about inception.

A similar point of view was expressed by Plesset (1969)

. . . A central problem in cavitation and boiling is how macroscopic vapor cavities
can form when moderate tensions are applied to the liquid. The theory of the tensile
strength of pure liquids predicts that a vapor cavity will form only when the liquid
is under extremely large tensions; as an equivalent effect the theory also predicts that
vapor bubbles appear in boiling only when the liquid has very large superheats. Since
these large tensile strengths and superheats are not observed, the idea of nuclei has
been introduced. These nuclei are in some sense holes in the liquid which are already
beyond molecular dimensions and which may therefore grow into macroscopic bubbles
under moderate liquid tensions.
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Figure 1. Plane Couette flow between walls.

Brennen (1995) notes that ‘. . . This ability of liquids to withstand tension is very
similar to the more familiar property exhibited by solids and is a manifestation of the
elasticity of a liquid’. Of course the elasticity of liquids, solid-like behaviour, could
occur only in time so short that the configurations of molecules is not changed by
flow, as could be expected in a cavitation event. Fisher (1948) notes that ‘. . . Glass
and other undercooled liquids may fail by the nucleation and propagation of cracks,
rather than of bubbles as do more mobile liquids’. Nucleation and propagation of
cracks have been realized in the experiments of Kuhl et al. (1994) discussed in §8.

The theory of cavitation, the tensile strength of liquids and the fracture of amor-
phous solids may be framed in a unified manner in which the breaking strength of the
material is defined in terms of tensile stresses along the principal axes of stress. Glass
at different temperatures is a perfect material for these considerations. At high tem-
peratures the molten glass flows and under the right conditions, flow bubbles ought to
open at a weak spot in the direction of the principal tension. Low-temperature glass
is an amorphous solid and we can imagine a crack to be initiated under tension at
the same weak spot. Glass at intermediate temperatures may exhibit as yet unknown
properties between cavity formation and crack propagation.

The nucleation of a cavity can occur as a sudden and not a continuous event.
The fluid must first rupture; then it fills with vapour or gas and flows as in the
experiments of Israelachvili and his collaborators described in §8. To open a cavity,
the liquid must be supersaturated; practically this supersaturation can be achieved by
lowering the pressure or by tensions created by flow. If the mean normal stress in a
liquid is of the order of one atmosphere, the liquid will be put into tension when and
where the tensile component of the flow-induced extra stress is larger than 105 Pa.
Tap water might be expected to nucleate vapour or gas bubbles at points at which
the flow-induced tensions exceed 1 atmosphere ≈ 105 Pa. On the other hand, for
flows with large capillary pressures or for fluids, which can withstand tension, larger
flow-induced tensions, say 106 Pa, are required.

5. Cavitation in shear
Consider plane shear flow between parallel plates as in figure 1.
The stress in this flow is given by T11 T12 0

T12 T22 0
0 0 T33

 = −π

 1 0 0
0 1 0
0 0 1

+ η

 0 U/L 0
U/L 0 0

0 0 0

 , (5.1)

where π = 1
3
(T11 + T22 + T33) is determined by the ‘pressurization’ of the apparatus.
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The angle which diagnonalizes T is given by (3.7) as S ′12 = 0 or

cos 2θ = 0, θ = 45◦.

(In the experiments on the break-up of viscous drops in plane shear flow done by
G. I. Taylor (1934), the drops first extend at 45◦ from the direction of shearing.)

Then, using (5.1), in principal coordinates, we have T11 + π 0 0
T22 + π 0

0 0 T33 + π

 = η
U

L

 1 0 0
0 −1 0
0 0 0

 (5.2)

and

B11 = pc − π + η
U

L
, (5.3)

B22 = pc − π − η
U

L
. (5.4)

The difference between the largest and smallest stresses is

B11 − B22 = 2η
U

L
. (5.5)

This difference is of the order of one atmosphere of pressure if

2η
U

L
= 106 dynes

cm2
. (5.6)

If η = 1000 P, U = 10 cm s−1 and L = 10−1 cm, we may achieve such a stress. It is
possible to imagine such a shearing motion between concentric rotating cylinders filled
with silicon oil, though the conditions are severe. If we could depressurize the system so
that a threshold of pressure less than one atmosphere were required, we might see cav-
ities appear in shear flow when B11 > 0 and B22 < 0. I am not aware of reports of cavi-
ties forming in shear flows, but the conditions required are at the border of realistic ex-
periments and may have escaped detection. Experiments of this kind ought to be tried.

Cavities formed in shear flows have been reported recently in a paper by Archer,
Ternet & Larson (1997). They note that ‘. . . the shear stress catastrophically collapses
if the shear rate is raised above a value corresponding to a critical initial shear stress
of around 0.1–0.3 MPa. . . . in polystyrene, bubbles open up within the sample; as
occurs in cavitation. Some similarities are pointed out between these phenomena and
that of ‘lubrication failure’ reported in the tribology literature.’ The critical stress
0.1–0.3 MPa = 1–3 atmospheres is just what might have been guessed for cavitation
under shear.

6. Cavitation in extension
We have argued that cavities always appear in the extensional flows defined in

principal axes coordinates even when the flow is pure shear. However, the direct
creation of a pulling flow without rotation (vorticity) may lead to a higher level of
dynamic stresses than could be otherwise achieved. Let us suppose that a small-
diameter thread open to the atmosphere is anchored at a solid wall at x = 0 and is

being pulled out at a constant rapid rate
◦
S in the direction x:

u =
◦
S x, v = − 1

2

◦
S y, ω = − 1

2

◦
S z. (6.1)
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The thread is in tension when
◦
S is large enough:

T11 = −π + 2η
∂u

∂x
≈ −pa + 2η

◦
S, (6.2)

where, for very thin threads π ≈ −pa + γ/R where pa is atmospheric pressure, γ is
surface tension and R is the radius. According to the maximum tension criterion (4.1)
cavities will form in the thread, and the thread may actually break, when

B11 ≈ pa +
γ

R
− pc − 2η

◦
S< 0. (6.3)

If we neglect surface tension the stretch rate
◦
S for breaking can be estimated, assuming

that the thread cannot sustain a tension, by pc = 0; then

◦
S> 106/2η(s−1).

For very viscous threads, say η = 500 P, the stretch rate for breaking

◦
S> 105(s−1)

is rather large.

The extensional flow (5.5) with a time-dependent
◦
S may be used to model the

motion emanating from a stagnation point at the centre of the neck in a collapsing
capillary filament. Lundgren & Joseph (1997) found that the neck is of parabolic
shape and its radius collapses to zero in a finite time. During the collapse the tensile
stress due to viscosity increases in value until at a certain finite radius which is
about 1.5 µm for water in air, the stress in the throat passes into tension, presumably
inducing cavitation there. On the other hand, Eggers’ (1993), Brenner et al. (1997)
model of capillary breakup does not seem to give rise to tension at the throat and
though experiments can be done, cavitation has not been considered.

7. Breaking tension of polymer strands
Another example of breaking of viscous threads in tension has been documented

in experiments by Wagner, Schulze & Göttfert (1996) on the drawability of polymer
melts.

In these experiments the tensile force needed to elongate an extruded polymer melt
is measured as a function of the draw ratio V = ν/ν0, where ν0 is the velocity of
the spinline at the die and ν is the velocity of the spinline at the takeup wheels. The
tensile force F is measured at the wheel and the stress in the strand at the wheel is
said to be given by

σ = FV/A0,

where A0 is the area of the cross-section of the die hole. V and F increase together
and at a certain critical FB (and VB) the strand breaks. The remarkable feature of this
breaking is that the breaking stress σB is independent of the extrusion pressure (the
wall shear stress) and temperature. Wagner et al. (1996) conclude that the breaking
stress σB is a ‘pure material constant’.

The breaking stress in their LDPE sample A18 (η0 = 104 Pa s) is

σB ≈ 106 Pa.
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Figure 2. Schematic illustration of the separation of two observed mica surfaces at progressively
increasing separation velocities as ascertained from the FECO fringe pattern and direct optical
microscope visualization. The most likely places where recoil and damage occurred are shown by
the starred points (*). Top row: ν < νc: smooth separation; no cavities. Middle row: ν > νc: abrupt
separation; cavity and damage form at center. Bottom row: ν � νc: abrupt separation; cavities and
damage form at rim (crater-like).

The breaking stress in the HDPE sample H50 (η0 > 4.8 Pa s) is

σB ≈ 1.1× 106 Pa.

Atmospheric pressure is roughly

pa ≈ 1.1× 105 Pa;

the pressure in the thread is somewhat larger than this because of surface tension.
The radius of the die is 1 mm; if the thread thins by a factor 10 or more the surface
tension addition to pressure in the thread will be sensible. It is nevertheless certain
that the strand is in tension when it breaks.

8. Cavitation experiments at the nanoscopic level
Chen & Israelachvili (1991) and Kuhl et al. (1994) have done important direct

visualization studies of cavitation of ultrathin nanometer liquid films using the surface
forces apparatus technique. They are able to visualize cavitation between mica surfaces
in approach-separation and shearing motions. They noticed that vapour cavities
developed when two curved surfaces are moved away from each other faster than
some critical velocity νc. In the experiments described by Kuhl et al. (1994), the liquid
between 1 cm radius hemispheres of mica was a low molecular weight, Newtonian,
180 P polybutadiene and the separating motions can be thought to give rise to
extensional motions like those described in (5.5).

Chen & Israelachvili say that

We have found that cavitation bubbles can occur either totally within the liquid, that
is, away from the surfaces, or at the solid-liquid interfaces. The adhesion of untreated
(polar) mica surfaces to the PBD liquid is stronger than the cohesion between the
liquid molecules themselves (“wetting” conditions); hence, the cavities form totally
within the liquid. In contrast, for surfaces coated with a surfactant monolayer, the
nonpolar solid-liquid adhesion is weaker . . . and the cavities form at the interfaces.

A qualitative description of their observation for the case of strong adhesion is
described in the caption for figure 2.
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The experiments of Israelachvili and his associates show that cavities open in
tension at a threshold value of the extensional stress and that the formation of
cavities is analogous to the fracture of solids, with the added caveat that the liquid
can flow into the crack immediately after fracture. In the words of Kuhl et al. (1994)

If the speed of separation is increased, the surfaces become increasingly more
pointed just before they rapidly move apart. Then, above some critical speed νc (here
about 100 µm/s) a completely new separation mechanism takes over, as shown in
Figure 3 [Reproduced here as figure 3.]. Instead of separating smoothly, the liquid
‘fractures’ or ‘cracks’ open like a solid. It is known that when subjected to very high
shear rates, liquids begin to behave mechanically like solids, for example, fracturing
like a brittle solid. In our experiments, the point and time at which this ‘fracture’
occurred was just as the surfaces were about to separate from their most highly
pointed configuration (Fig. 3C) - for had the separation velocity been any smaller
than νc they would have separated smoothly without fracturing. We consider that in
the present case, the ‘fracturing’ or ‘cracking’ of the liquid between the surfaces must
be considered synonymous with the “nucleation” or “inception” of a vapor cavity.

The stretch rate may be underestimated by νc/l where 2l is the shortest distance
between the mica surfaces. To get cavitation it is necessary to cross a stress threshold
which is consistent with the observation that ‘. . . The thicker the initial film thickness
the higher the value of νc . . .’

Of course, the analysis of steady extension in §6 does not apply to the highly
unsteady cavitation being described here. An estimate of the stress level at cavitation
can nevertheless be composed as

2η
◦
S

with
◦
S (t) the maximum value of the stress rate between t = 10.00 s when there is no

cavity and t = 10.01 s when a cavity has definitely opened. It may be optimistic, but
certainly possible, that the between distance the bump on the top mica surface and
the bottom surface changes by 1 nm in 10−4 to 10−5 s. Then, with 2η = 36 Pa s we
get

3.6× 105 < 2η
◦
S< 3.6× 106 Pa

which is greater than atmospheric pressure. A tension of this magnitude could open
up a vacuum cavity. According to Kuhl et al. (1994) ‘. . . When a cavity initially
forms and grows explosively, it is essentially a vacuum cavity since dissolved solute
molecules or gases have not had time to enter into the rapidly growing cavity’. The
final collapse of the cavity is slower because the cavity fills with vapour.

9. Conclusions
A summary of the main points in this paper is listed below.
• The pressure in incompressible Newtonian fluids is the mean normal stress.

The stress is decomposed into a pressure and stress deviatior with a zero trace. The
pressure in incompressible non-Newtonian liquids is given by the constitutive equation
and has no intrinsic significance. Cavitation criteria for liquids in motion must be
based on the stress and not on the pressure. The liquid cannot average its stresses or
recognize the non-unique quantity called pressure in non-Newtonian fluids.
• It is convenient for the study of cavitation of flowing liquids to decompose the

stress into a deviator and mean normal stress. The deviator has positive and negative



Cavitation and the state of stress in a flowing liquid 377

t = 0 t = 9 s t = 10.00 s

D = 14 nm

t = 10.01 s

D = 95 nm

t = 10.3 s t = 11 s

FED

A B C

Figure 3. Surfaces separating at high speed, ν > νc, showing FECO fringes (top), schematic
side-view (middle), and optical microscope view (bottom) of the surfaces. Homogeneous nucleation
of a vapour cavity is shown in D (t = 10.01 s), after which the cavity grows rapidly and then
collapses (D to F). Note that in picture F (1 s after inception) the cavity has still not totally
disappeared (evaporated or collapsed). Reproduced from Kuhl et al. (1994).
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normal stresses, deviating from the average. The most positive value of principal
stresses is the maximum tension. The stress in non-Newtonian liquids should also
decompose the stress into average and deviator.
• A cavitation bubble will open in the direction of maximum tension in principal

coordinates. The angles defining the principal axis determine how a cavity will open;
angles are important.
• A liquid can cavitate in shear. However, it is pulled open by tension in the

direction defined by principal stresses; Newtonian liquids in pure plane shear will
open 45◦ from that direction.
• Cavitation in a flowing liquid will occur at a nucleation site when the maximum

tensile stress in principal axes coordinates is smaller than the cavitation pressure.
• Cavitation can be a fast, non-equilibrium event resembling fracture in which the

cavity first opens and then fills with vapour and/or gas.
• Outgassing is cavitation of liquid gas in solution.

This work was supported by NSF/CTS-9523579 and ARO grant DA/DAAH04.
Helpful discussions with Roger Arndt are gratefully acknowledged.
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